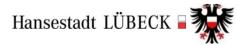


RainAhead Integriertes Planungs- und Warnungstool für Starkregen in urbanen Räumen

Lutz Kuwalsky und Thomas Einfalt

GeoForum MV Rostock-Warnemünde 7. April 2014

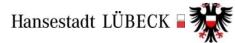
Gliederung


- Was ist RainAhead?
- Projektziele, Projektpartner
- Die 6 Arbeitspakete des Projektes
- AP 2: Geodaten f
 ür die Vulnerabilit
 ätskarte
- AP 5: Planungs- und Warnwerkzeug
- Stand des Projektes und Ausblick

Was ist RainAhead?

Integriertes Planungs- und Warnwerkzeug für Starkregen in urbanen Räumen

Tool for Urban Area <u>Rain</u> Storm and Flood Protection for real-time Warning and Planning <u>Ahead</u>


- Umgang mit Gebieten, die bei Starkregen (schadens-) gefährdet sind
- Erstellung einer Vulnerabilitätskarte
- Veränderung durch den Klimawandel?

3

RainAhead

Projektpartner

- hydro & meteo
 GmbH & Co. KG, Lübeck
- Fachhochschule Lübeck (Fachbereich Bauwesen)
- Hansestadt Lübeck
 (Fachbereich Umwelt-, Natur und Verbraucherschutz)

Unterstützung durch das Vermessungsbüro Holst und Helten

Projektzeit

Laufzeit: Juni 2013 – Mai 2016

Leuchtturmprojekt des Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU) zur Anpassung an den Klimawandel

Projektziele

Erstellung eines Werkzeugkastens für die Reduzierung von Gefahren durch Starkregen im Stadtgebiet.

Analyse

- historische Starkregenereignisse
- aktuell zu erwartende kleinräumige Abflusssituation
- Vulnerabilitätsbetrachtung (bezogen auf Starkregen)

Planung

- Abbildung von Folgen zukünftiger Ereignisse
- Prüfung von Maßnahmenalternativen (Bestand u. B-Planung)
- Bürgerbeteiligung (GIS-Oberfläche)

Warnung

- radargestützte Niederschlagsprognosen (Kurzzeitvorhersage)
- Monitoringsystem für Echtzeitdaten

PainAhead

Die 6 Arbeitspakete

- 1 Literaturübersicht / Klimaszenarien Recherche zu Projekten zum Thema Klimawandel und Starkregen
- 2 Vulnerabilitätsübersicht / -karte Auswahl der Eingangsdaten nach Aussagekraft und nach Verfügbarkeit
- 3 Detailuntersuchung des Pilotgebiets topographische Detailaufnahme der Oberflächen
- 4 Maßnahmenentwicklung technisch, planerisch, Monitoring, Schutzmaßnahmen, Informationen
- 5 GIS-basiertes Plan- und Warnwerkzeug Planungsvorschläge sowie Warnungstool für Starkregenereignisse
- 6 Öffentlichkeitsarbeit und Vernetzung innerhalb der Stadt, mit anderen Kommunen

Vulnerabilitätskonzept

aj4

Vulnerabilität:

Gibt an, inwieweit ein System für nachteilige Auswirkungen der Klimaänderung (hier: Starkregen) anfällig ist.

- Mit welchen Klimaveränderungen muss Lübeck rechnen? Erkenntnisse durch AP1: Klimaszenarien
- Wie empfindlich ist das Mensch/Umwelt-System? Erkenntnisse durch AP2: Vulnerabilitätsübersicht und AP3: Detailuntersuchung des Pilotgebietes

aj4

Hochwasser ist vielleicht etwas irreführend...Wir beschäftigen uns ja mit urbanen Sturzfluten, d.h. mit Überflutungen, die durch den Starkregen selber und durch eine Überlastung der Kanalisation hervorgerufen wird. Das eigentliche "Hochwasser" was z.B. durch ein Übertreten der Gewässer verursacht wird, klammern wir aus. Ich denke, dass es reicht, wenn du nur "Vulnerabilitätskonzept" als Überschrift behälst. Du könntest auch hier schon "Arbeitspaket 2" mit reinnehmen, da es in der nächsten Folie auch in der Überschrift auftaucht, also: "Arbeitspaket 2: Vulnerabilitätskonzept"

thomas; 01.04.2014

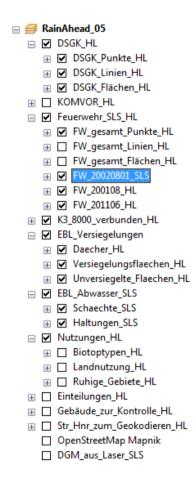
Arbeitspaket 2: Vulnerabilitätsübersicht / - karte

Für die Vulnerabilitätsübersicht werden im Laufe des Projektes zwei Ebenen berücksichtigt:

- Gesamtstadt vereinfacht
- 2 Pilotgebiete detailliert

Dabei spielen z.B. folgende Aspekte und Inhalte eine Rolle:

ALKIS, ATKIS, Topographie, Kanalkataster, Bodenarten, versiegelte Flächen, kritische Infrastrukturen, soziale Infrastrukturen, Feuerwehreinsätze, Altlasten, Öltanks, Brunnen usw.

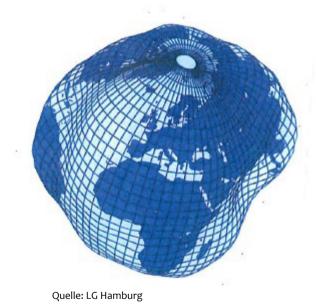


PainAhead

Arbeitspaket 2: Vulnerabilitätsübersicht / - karte

Zwei Schritte:

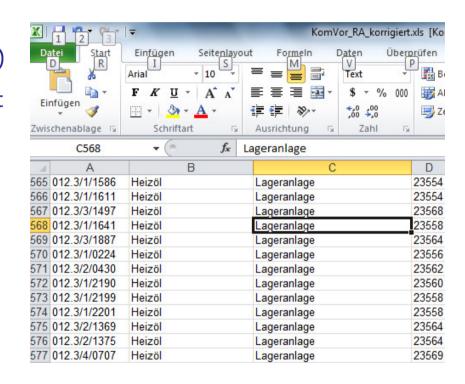

- Auswahl und Bewertung der Eingangsdaten nach Aussagekraft und nach Verfügbarkeit
- Überführung ins GIS (ArcGIS der Firma ESRI)



Arbeitspaket 2: Vulnerabilitätsübersicht / - karte

Fragen, Teil 1: Koordinatensysteme

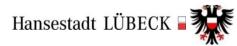
- Umweltfachdaten (z.B Altlasten oder Grundwasserbrunnen)
 Excel -> Straßenname, Hausnummer
- kritische Infrastruktur (z.B. Tankstellen, Industrieanlagen)
 Excel -> Straßenname, Hausnummer
- Fachdaten für die Entwässerung (z.B. Oberflächenbefestigungen oder Versickerungseigenschaften der Böden)
 - **GK** Koordinaten
- Daten zur Sozialstruktur (z.B. Pflegeeinrichtungen oder KiTas), ALKIS UTM, mit Streifen 32
- stadteigene Straßendaten UTM, ohne Streifen 32

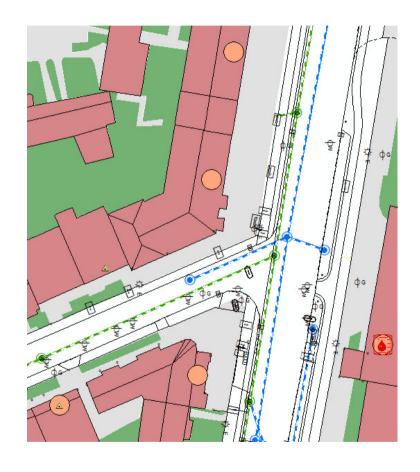


Arbeitspaket 2: Vulnerabilitätsübersicht / - karte

Fragen, Teil 2: Verfügbarkeit

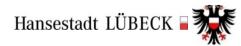
- Interner Datenfluss (GDI der Stadt Lübeck)
 - Können GIS- (z. B. WMS-) Dienste genutzt werden?
 - Sind Daten-Schnittstellen vorhanden?
 - Wie hoch ist der Umarbeitungsaufwand
- Ständig verfügbar?
 - einmaliges Kopieren: Daten veralten sehr schnell
- Vertraulichkeit
 - Einwohnerdaten, wie fließen sie ein?
 - Gefahrenstoffe, wo befinden sie sich?





Arbeitspaket 2: Vulnerabilitätsübersicht / - karte

Fragen, Teil 3: Qualität

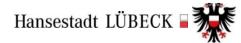

- Aktualität
 Bedingt durch mangelnden Datenfluss
 stehen nicht immer die aktuellen Daten
 zur Verfügung
- Vollständigkeit
 - Wie gut sind einzelne Datenbestände gepflegt?
 - Verlust durch Umsetzung
- Metadaten
 - Wann wurden die Daten erfasst?
 - Wer garantiert für die Richtigkeit
 - Wie genau sind die Daten

aufgrund eines Beschlusses

Arbeitspaket 2: Vulnerabilitätsübersicht / - karte

Fragen, Teil 4: Viele verschiedene Systeme

- ArcGIS (als Stadt-WebGIS)
 Datenhaltende Stelle der Hansestadt Lübeck
- AutoCAD (Entsorgungsbetriebe)
- CARD/1 (Bereich Verkehr, Brücken)
- CAOS (Bereich Verkehr, Straßenunterhaltung)
- Archikart (Liegenschaftsauskunft)
- Fachprogramme ohne GIS-Anbindung (z. B. Altlasten)
- MS Office
- u. a.


14

Arbeitspaket 2: Vulnerabilitätsübersicht / - karte

Zwischenfazit Arbeitspaket 2

- Datenerfassung
 Ohne funktionierende GDI schwierig
- Datenaufbereitung
 Ohne Datenfluss sehr zeitintensiv
- Datenqualität
 Steigt bei guter Datenmodellierung im GIS

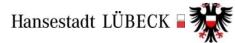
Warn- und Planungssystem für Starkregenereignisse

Werkzeug für Kommunen zum Umgang mit Starkregen

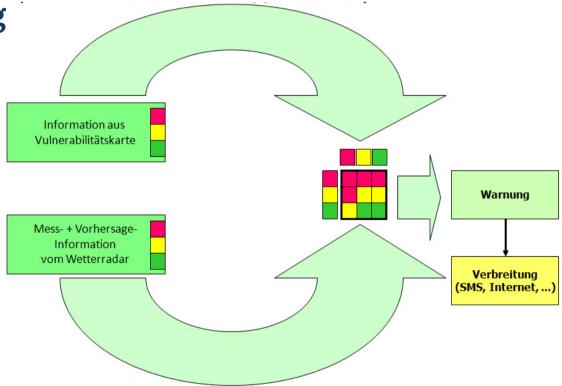
- Umgang mit Gebieten, die bei Starkregen (schadens-) gefährdet sind
- Vulnerabilitätskarte
- Veränderung durch den Klimawandel?

Planung

- Genaue Erfassung sensibler Areale
- Strategien gegen
 Verwundbarkeit


Warnung

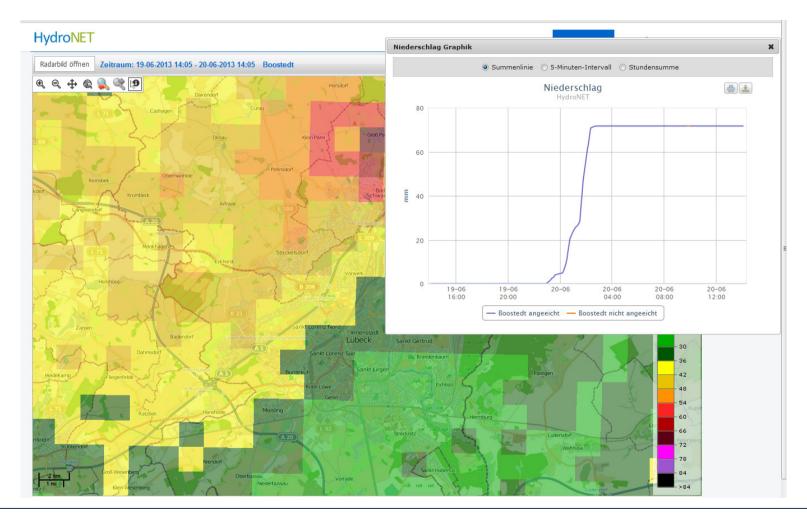
- Überwachung des Niederschlags in Echtzeit
- stadtteilgenaueKurzzeitvorhersagen



Warnsystem für Starkregenereignisse

Die Ergebnisse der bisherigen Arbeitspakete sind Grundlage für das neue Werkzeug:

Warnwerkzeug



Warnsystem für Starkregenereignisse

Warnsystem für Starkregenereignisse

Beispiel: Automatisierte Warnungen an das LLUR

Gefährdungsschwellen und Empfänger konfigurierbar

Die Niederschlagsmenge in einem oder mehr KOSTRA-Rasterfeldern hat den in HydroNET-SCOUT vorgegebenen Grenzwert überschritten. Das Maximum der radargemessenen Niederschlagsmenge beträgt für Dauerstufen. die in den vergangenen 24 Stunden (28.01.2013 07:30 - 29.01.2013 07:30) geendet haben:

```
Für 1-Stunden-Summen: 15.62 mm
                                  (Wiederkehrzeit: T=0.5)
```

Die folgenden KOSTRA Rasterfelder (Zeile Spalte) sind betroffen:

```
- 15 35 - Zeitraum: 29.01.2013 00:10 Uhr MET - 29.01.2013 01:50 Uhr MET
- 15 36 - Zeitraum: 29.01.2013 00:15 Uhr MET - 29.01.2013 01:45 Uhr MET
- 16 35 - Zeitraum: 29.01.2013 00:05 Uhr MET - 29.01.2013 02:00 Uhr MET
```

- 16 36 - Zeitraum: 29.01.2013 00:10 Uhr MET - 29.01.2013 02:00 Uhr MET

Für 6-Stunden-Summen: 18.22 mm (Wiederkehrzeit: T=0.5)

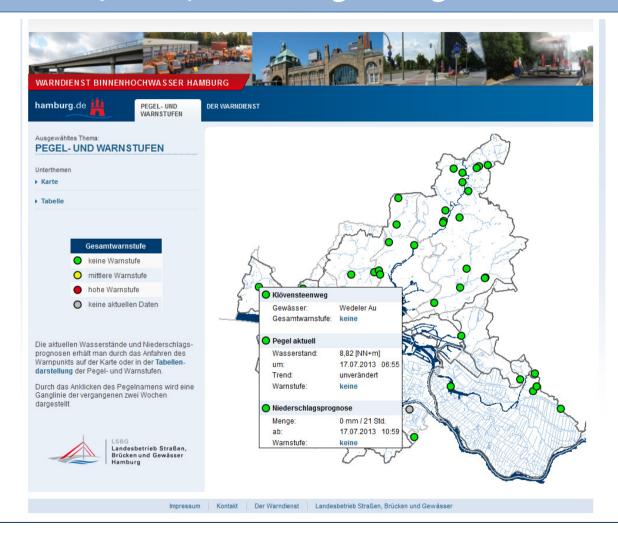
Die folgenden KOSTRA Rasterfelder (Zeile Spalte) sind betroffen:

- 16 35 Zeitraum: 28.01.2013 19:35 Uhr MET 29.01.2013 06:35 Uhr MET
- 16 36 Zeitraum: 28.01.2013 22:50 Uhr MET 29.01.2013 06:05 Uhr MET

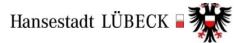
Warnsystem für Starkregenereignisse

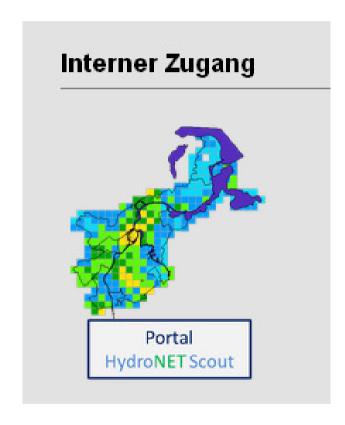
Warnwerkzeug (eingeschränkt öffentlich)

- Informationen aus aktuellen Niederschlagsvorhersagen (Radar)
- Kombiniert mit Vulnerabilitätskarten ("Brennpunkte")
- Warnungen (Internet, SMS) inkl. Sofort-Maßnahmenvorschläge als Basis für Katastrophenschutz (Feuerwehr, Stadtwerke, Entsorgungsbetriebe, ...)



Warnsystem für Starkregenereignisse



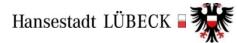


Stand des Projektes und Ausblick

Stand des Projektes

- Radarvorhersage und Radarmessungen im internen Webportal
- Städtische GIS-Daten für die Vulnerabilitätskarte gesammelt
- Kanalnetzmodell existiert für einen Teil des Einzugsgebietes
- Planungsvariante für das neu einzubeziehende Gelände (ehemals Güterbahnhof) ist abgesprochen

Stand des Projektes und Ausblick


Ausblick für 2014

- Ermittlung von vulnerablen Punkten
- Erweiterung des Webportals um Warnung
- Oberflächenmodellierung für Teilbereiche des Untersuchungsgebietes
- Öffentlichkeitsarbeit + Erfahrungsaustausch mit anderen Kommunen
- Konzept ist übertragbar auf andere Kommunen

