Einsatz von KI und Visualisierung für große Datenmengen

Stefanie Ellinger, Dr. Uwe Jasnoch

How does it work?

The Challenge

Classification

- Input: Image
- Output: Label of the class

airplane

Localization

- Input: Image with known
 number of objects
- Output:
 - Label of the class
- Bounding Box

Object Detection

- Input: Image with unknown number of objects
- Output:
- Label for each object
- Bounding box for each object

Increasing Complexity

Components of an object detection model

Choice of data – airplane

- Sufficient amount of training and testing data
- At least 100 images to train a new object class
 - goal of training: feature generalization
 - Various different scenes → differing in backgrounds, arrangements, perspectives
- Consistency in scale, spatial resolution and size of the image

Applying Deep Learning Classification for Rail and Light-Rail

Deep Learning to optimize processes

- Classify the substrate of the track
- Classify the sleepers
- Based on available still images

Classification

- Input: Single Image
- Output: Label of the class
- Output: link to the linear reference model

Classification results – Determine substrate of the track

Classification results – Wooden or concrete sleepers?

Applying Deep Learning for Object Detection

- Is necessary in images and videos to deal with the huge amount of data
- Deep Learning can undertake the task of ,simple' actions like counting objects in images or videos
- Those countings can be stored and compared over time
- · And turned into monitoring systems with pre-defined KPIs in objects or object type combintations

Use case: monitoring of an airport

Raise alert if the amount of e.g. Boeing 777F changes by the number of 10 in comparison to the average number

- Assistance and support of analysts
- Continuous recording of objects of interest in an area of interest

Results

Object Class: Airplane

Results

Object Class: Storage Tank

Spatial Modeler

One of the most flexible tools available on the market. More than 400 functions for raster and vector data processing.

Spatial Models Combine

Pre-Processing

- Pan-Sharpening
- Index calculation
- Dicing
- ...

Processing

- Bulk-load and process raster data and point
 - clouds
- Execute DL
 operators
- Can be overlaid with other operators

Post-Processing

- Filtering
- Mosaicking
- Simple output management

Spatial Modeler supporting large spatial extent

Dice the input

Process dices with DL model

Mosaic dices back together

Application in ERDAS Imagine

Point Cloud Classification

Dynamic Digital Reality Mesh Point Cloud

Starting point: Point Cloud Classification

Automatic classification of point clouds for

- Terrestrial Laser Scanning
- Mobile Mapping
- Airborne Laser Scanning

I.e. assignment of each point to one of a set of predefined classes, e.g. building, vegetation, terrain, etc.

Work conducted at Hexagon Geosystems

Detecting and annotating in large datasets

Your key take a ways

- Deep Learning mechanisms can be applied in different domains
 - For regular and large-scale images
 - On videos
 - For point clouds
- You can classify areas and objects as well as identify & locate objects
 - By observing and following certain rules, results could be significantly improved
 - *Multi-phase approach is sometimes necessary to improve results*
- Interactive, dynamic visualization of large scene's is possible
 - Performance boost by GPL processing even in the web similar to the boost in DL
 - Fusing data sources and technologies (including DL) is the key for generating insights

