



# Using geographic tracking data to analyse spatial behaviour in eTourism



Marko Modsching, Ronny Kramer Prof. Dr.-Ing. Klaus ten Hagen University of Applied Sciences Zittau/Görlitz



Prof. Dr. Ulrike Gretzel Texas A&M University

# Outline

- Motivation
- Related Work
- Design of Field Study
- Methodologies/Results
  - Spatial Maps
  - Spatial Distribution
  - Activity Discovery by position
  - Discovery by walking speed analysis
  - Flows of Areas of Interest
- Future research

Gem





#### Why is the spatial behaviour of tourists important?

- No quantitative data about the positions of tourists! (just the number of overnight stayings)
- Restaurant success depends on the exposure to tourists
- Real estate agents use spatial behavior to assess value of real estate
- Success of marketing campaigns by restaurants or DMOs become measurable
- City administration / Destination Management Organization (DMO) need to avoid overcrowding of single places

## **Related Work**

- Freytag: study in Heidelberg
  → spatial behavior of tourists is very concentrated
- Kempermann: tracking of visitors behavior in a theme park → significant difference between first-time and repeated visits
  - $\rightarrow$  Rely on diary data or questionnaires

• Dijkstra: Simulation of the movements of pedestrians by agents

Ge

- Shoval, Isaacson: comparison of different tracking systems (GPS, land-based tracking)
- Larson, Bradlow, Fader: Analysis of the paths of shopping carts in a supermarket with RFID Tags

Ŷ=suv\_

# ¢=suv\_



#### Experiment

- 4 weeks from 01.June To 30.June
- Stand at the Untermarkt in Görlitz
- Distribution of MDA and GPS mouse to tourists as part of field trial of a Restaurant Assistant
- MDA and GPS communicate via bluetooth
- Log w/ position and time
- Download log to PC after return of the MDA / GPS combo
- Analysis







# **Spatial Density Map**

- Overlay map with grid
- Increment grid counter if a tourist visits a grid cell
- Color coding to visualize the counter
  - Dark red = often visited
  - Dark blue= visited by a few
- Visualization of untapped potentials in the tourist destination Görlitz
  - Replica of the Holy Sepulchre
  - Large quarter in consistent Wilhelmian style
- Görlitz (D) / Zgorzelec (PL) is one destination for many visitors



Ge

Ŷ=suv\_

#### ¢=suv\_



#### **Spatial Distribution - Relative Spatial Distribution Metric**

Relative Number of Visits  $RNoV(i, j) = \frac{NoV(i, j)}{TNoV}$ 

Spatial Distribution Metric  $SDM = -\sum_{\forall i,j} RNoV(i, j) \log_2(RNoV(i, j))$ 

Relative Spatial Distribution Metric

 $RSDM = \frac{SDM}{\log_2(I \cdot J)}$ 

| NoV(i,j) |    | RSDM | NoV(i,j) |   | RSDM | NoV(i,j) |   | RSDM |
|----------|----|------|----------|---|------|----------|---|------|
| 10       | 10 | 1    | 10       | 0 | 0    | 10       | 1 | 0.22 |
| 10       | 10 |      | 0        | 0 |      | 0        | 0 |      |
| 10       | 1  | 0.41 | 10       | 5 | 0.75 | 10       | 5 | 0.9  |
| 1        | 0  |      | 5        | 0 |      | 5        | 2 |      |
| 10       | 7  | 0.96 | 10       | 7 | 0.98 | 10       | 8 | 0.99 |
| 5        | 4  |      | 6        | 5 |      | 8        | 7 |      |

→ RSDM(Görlitz) = 
$$0.6$$

#### **Analysis of Activities using Hot-Areas**

Ŷ=suv\_

- Virtual georeferenced activity area
- Areas are associated with activity categorization (Restaurant, Museum etc.)
- → Special evaluation of sights
- → Analysis of the tourists behaviour in the whole area



Ge

→ Confirms Schmidt-Belz: "A restaurant is the most important information need"

- Example: "Vierradenmühle" (Restaurant by a waterfall)
  - Mean tourists stay: 2.3 min → Mainly "lookers" …
  - The waterfall attracts many tourists, few become guests in the restaurant
  - → Marketing opportunity

#### Challenge: GPS accuracy

# ♦=suv\_\_\_\_



#### Automatic discovery of activity areas: Walking speed

- Hot-Area approach depends on GPS accuracy
- More robust method is needed
- → automatic discovery by filtering the walking speed
- Walking speed distribution is bi-modal
  - − Slow down → activity found
  - Walking between activities
- Individual threshold for each tourist



- Many tourists stop at many places → Many areas with slow-downs
- k-means clustering to identify centroids

# ♦=suv\_\_\_\_



# Clustered Slow-Down Area (SDA) → Activity

- 1. Filtering of the walking speed of each tourist to identify the individual slow-down areas (SDA) and the distribution of durations.
- 2. Cluster the slow-down areas of all tourists
- 3. Compute duration distributions for the "clustered slow-down area".
- **4**. Visualization:
  - 1. Compute a center for each SDA
  - 2. Draw a circle with the number of tourists indicated by the colour/shade and the average duration by the size.
- The deeper the blue, the more tourists attended the attraction
- The greater the circle, the longer the tourists stayed there







#### **Flows between Aols**



# ¢=5uv\_\_\_\_Ge@™

#### Future research

- Clustering without background information leads sometimes to a misinterpretation (stop to chat with a friend == sightseeing??)
- Combination of MDA and Bluetooth GPS receiver is error prone → use stand alone GPS loggers!!
- Capturing the spatial behavior was a by-product of the field trial for the Dynamic Restaurant Assistant. → Independent study using GPS loggers.
- Spread hand-out place over the destination
- City councils recognized the importance of the study → another field trial in summer of '06

# Conclusion

 Methodology for analyzing the spatial behaviour quantitatively

GE

- Identify the state of a destination with SDM
- Find potentials with spatial maps
- Analyze interest-fields with the hot area approach
- Find (tourists) interesting places automatically

 Delivers an important base and feedback for the marketing of restaurants, DMOs or city administrations, marketing firms and real estate agents



# Thanks for the attention



## appendix

# Field Study in Görlitz

- Summer 2005: 15 MDA's equipped with Bluetooth GPS receivers
- Stand on the Untermarkt
- Ask "real" tourists to carry the devices during their tour
- Questionnaire data about their computer literacy and whether this is the first visit to Görlitz

VESUV\_\_\_

- Tracking and collecting the spatial data
- Subsequent analysis





Ge

#### References

• Freytag, Tim (2003): "Städtetourismus in Heidelberg – Ergebnisbericht zur Gästebefragung 2003.", Geographisches Institut der Universität Heidelberg.

GE

- Djikstra, Jan; Jessurun, Joran; Timmermans, Harry (2001): "A Multi-Agent Cellular Automata Model of Pedestrian Movement" *Pedestrian and Evacuation Dynamics, Schreckenberg and Sharma (eds.)*, Springer-Verlag, Berlin.
- Kempermann, Astrid; Chang-Hyeon, Joh; Timmermans, Harry (2004): "Comparing First-time and Repeat Visitors' Activity Patterns in a Tourism Environment" Consumer Psychology of Tourism, Hospitality and Leisure Vol.3, CAB International.
- Schmidt-Belz, Barbara; Posland, Stefan (2003a): "User Validation of a mobile Tourism Service"; Workshop HCI mobile Guides, Udine (Italy).
- Ten Hagen, K. et al. (2005b): "Context driven adaptive tour computation and information presentation", First International Workshop on Managing Context Information in Mobile and Pervasive Environments; Ayia Napa, Cyprus.